80 research outputs found

    Two-step flux penetration in classic antiferromagnetic superconductor

    Full text link
    The influence of antiferromagnetic order on the mixed state of a superconductor may result in creation of spin-flop domains along vortices. This may happen when an external magnetic field is strong enough to flip over magnetic moments in the vortex core from their ground state configuration. The formation of domain structure causes modification of the surface energy barrier, and creation of the new state in which magnetic flux density is independent of the applied field. The modified surface energy barrier has been calculated for parameters of the antiferromagnetic superconductor DyMo6_{6}S8_{8}. The prediction of two-step flux penetration process has been verified by precise magnetization measurements performed on the single crystal of DyMo6_{6}S8_{8} at milikelvin temperatures. A characteristic plateau on the virgin curve B(H0)B(H_0) has been found and attributed to the modified surface energy barrier. The end of the plateau determines the critical field, which we call the second critical field for flux penetration.Comment: EPJ LaTeX style,7 pages, 3 figures. Added new data and references. European Journal of Physics - accepte

    Enhancement of the Hall-Lorenz number in optimally doped YBa2Cu3O_7-d

    Full text link
    Electronic heat transport in the normal state of a high-quality single crystal of optimally-doped superconductor YBa2Cu3O6.95 was studied by measurements of longitudinal and transverse transport coefficients. For the temperature range from 100 to 300 K, the Hall-Lorenz number (Lxy) depends weakly on temperature and is about two times larger than the Sommerfeld value of the Lorenz number Lo = (pi^2)/3. Our results can be interpreted using a Fermi liquid model when effects of the pseudogap that opens at the Fermi level are included. However, we find that the bipolaron model can also explain both the enhanced value and the weak temperature dependence of the Hall-Lorenz number.Comment: Accepted for publication in Europhysics Letters; 16 pages, 2 figure

    MgB2 single crystals substituted with Li and with Li-C: Structural and superconducting properties

    Full text link
    The effect of Li substitution for Mg and of Li-C co-substitution on the superconducting properties and crystal structure of MgB2 single crystals has been investigated. It has been found that hole doping with Li decreases the superconducting transition temperature Tc, but at a slower rate than electron doping with C or Al. Tc of MgB2 crystals with simultaneously substituted Li for Mg and C for B decreases more than in the case where C is substituted alone. This means that holes introduced by Li cannot counterbalance the effect of decrease of Tc caused by introduction of electrons coming from C. The possible reason of it can be that holes coming from Li occupy the pi band while electrons coming from C fill the sigma band. The temperature dependences of the upper critical field Hc2 for Al and Li substituted crystals with the same Tc show a similar dHc2/dT slope at Tc and a similar Hc2(T) behavior, despite of much different substitution level. This indicates that the mechanism controlling Hc2 and Tc is similar in both hole and electron doped crystals. Electrical transport measurements show an increase of resistivity both in Li substituted crystals and in Li and C co-substituted crystals. This indicates enhanced scattering due to defects introduced by substitutions including distortion of the lattice. The observed behavior can be explained as a result of two effects, influencing both Tc and Hc2. The first one is doping related to the changes in the carrier concentration, which may lead to the decrease or to the increase of Tc. The second one is related to the introduction of new scattering centers leading to the modification of the interband and/or intraband scattering and therefore, to changes in the superconducting gaps and to the reduction of Tc.Comment: 22 pages, 17 figures, submitted to PR

    Influence of the carbon substitution on the critical current density and AC losses in MgB2 single crystals

    Full text link
    The DC magnetization and AC complex magnetic susceptibilities were measured for MgB2 single crystals, unsubstituted and carbon substituted with the composition of Mg(B_0.94C_0.06)2. The measurements were performed in AC and DC magnetic fields oriented parallel to the c-axis of the crystals. From the DC magnetization loops and the AC susceptibility measurements, critical current densities (Jc) were derived as a function of temperature and the DC and AC magnetic fields. Results show that the substitution with carbon decreases Jc at low magnetic fields, opposite to the well known effect of an increase of Jc at higher fields. AC magnetic losses were derived from the AC susceptibility data as a function of amplitude and the DC bias magnetic field. The AC losses were determined for temperatures of 0.6 and 0.7 of the transition temperature Tc, so close to the boiling points of LH2 and LNe, potential cooling media for magnesium diboride based composites. The results are analyzed and discussed in the context of the critical state model.Comment: 10 pages, 7 figures, 1 tabl
    • …
    corecore